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The Application of Fourier Transform in 
Determining the Velocity of Two Dimensional 

(2D) Interfering Waves.  
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Abstract: In this paper we considered the propagation of a carrier wave in a free 2D cylindrical coordinate space. A carrier wave as the 
name implies is the resultant interference of a ‘parasitic wave’ on a ‘host wave’.   It is assumed that the initial characteristics of the ‘host 
wave’ are known while that of the ‘parasitic wave’ is not known before the superposition. The attenuation mechanism of the total phase 
angle, the characteristic angular velocity and the radial velocity of the carrier wave produced by the two interfering waves is effectively 
studied by using Fourier transform technique. This study provides a method for determining the characteristics of a ‘parasitic wave’ in the 
carrier wave whose initial characteristics were not known. It is shown that when the basic features of a carrier wave is undergoing 
attenuation under any circumstance, they do not consistently come to rest; rather they show some resistance during the decay process, 
before it is finally brought to rest. The irregular complex behaviour exhibited by the maximum displacement of the carrier wave during the 
damping process, is due to the resistance pose by the components of the ‘host wave’ in an attempt to annul the destructive effects of the 
interfering ‘parasitic wave’.  Also the inconsistent decay behaviour of the carrier wave is caused by constructive interference (high 
attraction) or destructive interference (high repulsion) between the ‘host wave’ and the ‘parasitic wave’. 
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——————————      —————————— 
 
1.0 Introduction 
In physics, a wave is disturbance or oscillation that travels 
through matter and space, accompanied by a transfer of 
energy. Wave motion transfers energy from one point to 
another, often with no permanent displacement of the 
particles of the medium, that is, with little or no associated 
mass transfer. They consist, instead, of oscillations or 
vibrations around almost fixed locations. Waves are 
described by a wave equation which sets out how the 
disturbance proceeds over time. The mathematical form of 
this equation varies depending on the type of the wave [1]. 
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In physics and systems theory, the superposition principle, 
also known as superposition property, states that, for all 
linear systems, the net response at a given place and time 
caused by two or more stimuli is the sum of the responses 
which would have been caused by each stimulus 
individually. The homogeneity and additivity properties 
together are called the superposition principle. That is, for 
additivity we have  ++=++ )()()( 2121 xFxFxxF , while 

for homogeneity )()( xFaxaF =  where a is some scalar [2], 
[3].   
 
This principle has many applications in physics and 
engineering because many physical systems can be 
modelled as linear systems. For example a beam can be 
modelled as a linear system where the input stimulus is the 
load on the beam and the output response is the deflection 
of the beam. The importance of linear systems is that they 
are easier to analyse mathematically; there is a large body 
of mathematical techniques, frequency domain linear 
transform methods such as Fourier, Laplace transforms, 
and linear operator theory that are applicable. Because 
physical systems are generally only approximately linear, 
the superposition principle is only an approximation of the 
true physical behaviour [4], [5].  
 
The superposition principle applies to any linear system, 
including algebraic equations, linear differential equations 
and systems of equations of those forms. The stimuli and 
response could be numbers, functions, vectors, vector 
fields, time-varying signals, or any other object which 
satisfies certain axioms. Note that when vectors or vector 
fields are involved, a superposition is interpreted as a 
vector sum. For example, in Fourier analysis, the stimulus 
is written as the superposition of infinitely many sinusoids 
[6].  
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Due to the superposition principle, each of these sinusoids 
can be analyzed separately, and its individual response can 
be computed. The response is itself a sinusoid, with the 
same frequency as the stimulus, but generally a different 
amplitude and phase. According to the superposition 
principle, the response to the original stimulus is the sum 
(or integral) of all the individual sinusoidal responses [7], 
[8].    
 
The phenomenon of interference between waves is based 
on the idea of superposition of waves. When two or more 
waves traverse the same space, the net amplitude at each 
point is the sum of the amplitudes of the individual waves. 
In some cases, the summed variation has smaller amplitude 
than the component variations; this is called destructive 
interference. In other cases, the summed variation will have 
bigger amplitude than any of the components individually; 
this is called constructive interference [3], [9].         
 
Some waves in nature behave parasitically when they 
interfere with another one. Such waves as the name implies 
has the ability of transforming the initial characteristics and 
behaviour of the interfered wave to its own form and 
quality after a period of time. Under this circumstance, all 
the active constituents of the interfered wave would have 
been completely eroded and the resulting wave which is 
now parasitically monochromatic, will eventually attenuate 
to zero, since the ‘parasitic wave’ does not have its own 
independent parameters for sustaining a continuous 
existence [10].  
 
Any actively defined physical system carries along with it 
an inbuilt attenuating factor such that even in the absence 
of any external influence the system will eventually come to 
rest after a specified time. This accounts for the non-
permanent nature of any physical system. A ‘parasitic 
wave’ as the name implies, has the ability of destroying or 
transforming the intrinsic constituents of the ‘host wave’ to 
its form after a sufficiently long time. It contains an inbuilt 
multiplier λ  which is capable of raising the intrinsic 
parameters of the ‘parasitic wave’ to become equal to those 
of the ‘host wave’. Consequently, once this equality is 
achieved, then all the active components of the host wave 
would have been completely eroded and it ceases to exist. 
 
Fourier series has long provided one of the principal 
methods of analysis for mathematical physics, engineering, 
and signal processing. It has spurred generalizations and 
applications that continue to develop right up to the 
present. While the original theory of Fourier series applies 
to periodic functions occurring in wave motion, such as 
with light and sound, its generalizations often relate to 
wider settings, such as the time-frequency analysis 

underlying the recent theories of wavelet analysis and local 
trigonometric analysis. Periodic functions arise in the study 
of wave motion, when a basic waveform repeats itself 
periodically [11].  
 
In qualitative analysis, unlike numerical work, the number 
one is a fundamental number, an indiscriminate constant 
value which can only describe the neutral behaviour of a 
system of varying series. In consequence, the exact 
behaviour of a non-stationary system may not be studied in 
the indiscriminate region of a constant value. Thus the 
constant value term which is a non-zero-order 
approximation may therefore be neglected from the 
varying series solution by the ‘second world 
approximation’ or the ‘third world approximation’. Thus 
the approximation has the advantage of fast convergence of 
result and high degree of minimization. It also helps to 
control the complex anomalous behaviour of any possible 
square root displacement function which may produce 
imaginary result [10]. 

This paper is outlined as follows. Section 1, illustrates the 
basic concept of the work under study. The mathematical 
theory is presented in section 2. The results obtained are 
shown in section 3. While in section 4, we present the 
analytical discussion of the results obtained. The conclusion 
of this work is shown in section 5. This is immediately 
followed by appendix of some useful identities and a list of 
references.  
 
1.1     Research Methodology 
In this work we used Fourier analysis to investigate the 
behaviour of a carrier wave propagating in a 2D free space. 
A carrier wave as the name implies is the resultant 
interference of a ‘parasitic wave’ on a ‘host wave’.  The 
‘second world approximation’ was first utilized to 
minimize the oscillating amplitude of the carrier wave. The 
oscillating amplitude and the spatial oscillating phase 
which were determined separately by Fourier analysis are 
convoluted to obtain the velocity with which the CW is 
propagating. 
2.0 Mathematical Theory 

2.1     Dynamical Theory of Superposition of    Two 
Incoherent Waves. 

The interference of one wave 2y  say ‘parasitic wave’ on 

another one 1y  say ‘host wave’ could cause the ‘host wave’ 
to decay to zero if they are out of phase. The decay process 
of 1y  can be gradual, over-damped or critically damped 
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depending on the rate in which the amplitude of the host 
wave is brought to zero.  However, the general concept is 
that the combination of 1y  and 2y  would first yield a third 
stage called the resultant wave say y , before the process of 
decay sets in. In this work, we refer to the resultant wave as 
the constituted carrier wave CCW. Now let us consider two 
incoherent waves defined by the displacement vectors 
                                                         

( )βεβββ −−= tnrkatry  .cos),(1                   (2.1) 
                                                              

( )λελλλ ′−′−′= tnrkbtry  .cos),(2                 (2.2) 
where all the symbols have their usual wave related 
meaning. In this study, (2.1) is regarded as the ‘host wave’ 
whose propagation depends on the inbuilt multiplier β (= 
0, 1, 2, . . . maxβ ). While (2.2) represents a ‘parasitic wave’ 

also with an inbuilt multiplier λ (= 0, 1, 2, . . . maxλ ). The 
inbuilt multipliers are both dimensionless and as the name 
implies, they have the ability of gradually raising the basic 
intrinsic parameters of both waves respectively with time.    
 
We have already established in a previous paper [12] that 
when (2.2) is superposed on (2.1) we get that 
              

( ) ( ){ } 2

1

2222 ()(cos2)( λεελλλ ′−−′−−−−= tnnbabay

( )Etnnrkc −′−− )(.cos λ
                              (2.3) 

Equation (2.3) is regarded as the carrier wave (CW) and it is 
the equation that governs the dynamical behaviour of the 
coexistence of the HIV parasite in the human blood 
circulating system. It is obvious from the equation that once 
the characteristics of the ‘parasitic wave’ become equal to 
those of the ‘host wave’ as a result of the multiplierλ , then 
the CW goes to zero and the ‘host wave’ ceases to exist. 
Here we assume 1=β , a constant in this work and leave its 
variation for future study.  
 
By interpretation E represents the total phase angle of the 

CW and )sin(cos)(. ϕϕλ +′−= rkkrkc


, is a two 

dimensional (2D) coordinate position vector. By definition: 
)( λnn ′− is the modulation angular frequency, )( λkk ′− is 

the modulation propagation constant, the phase difference 
δ between the two interfering waves is )( λεε ′− while 

( ) ( )λεελλ ′−−′−− ()(cos2
2

tnnba is the interference term.  

Waves out of phase interfere destructively according to 

( )2λba − and wave’s in-phase interferes constructively 

according to ( )2λba + .  

In the regions where the amplitude of the wave is greater 
than either of the amplitude of the individual wave, we 
have constructive interference that means the path 
difference is )( λεε ′+ , otherwise, it is destructive in which 

case the path difference is )( λεε ′− . If nn ′= , then the 

average angular frequency say 2/)( λnn ′+ will be much 

more greater than the modulation angular frequency say 
2/)( λnn ′− and once this is achieved then we will have a 

slowly varying carrier wave with a rapidly oscillating 
phase. The total phase angle and its variation with respect 
to time give the characteristic angular velocity )(tZ . That is  

                                             
( )
( )






′−−′+

′−−′+−=
tnnba

tnnba
E

)(coscos

)(sinsin
tan 1

λλελε

λλελε
   (2.4) 

                         

dt

dE
)(tZ−=

( ) ( )
( )











′−+′−++

′−+′−+
′−−=

tnnabba

tnnabb
nn

)()(cos2

)()(cos
)(

222

22

λλεελλ

λλεελλ
λ                                 

(2.5) 
However, it should be observed that in the absence of the 
multiplier )0( =λ  the characteristic angular velocity does 
not exist.  Now let us decompose the carrier wave equation 
CW into two functions; function of the oscillating 
amplitude )(Af and the function of the spatial oscillating 
phase )(θf . Hence 
                              

( ) ( ){ } 2

1

2222
max ()(cos2)()( λεελλλ ′−−′−−−−== tnnbabaAfy                         

(2.6) 
                                                    

( )Etnnrkf c −′−−= )(.cos)( λθ 
                      (2.7) 

Equation (2.6) also represents the maximum displacement 
of the CW since the amplitude is a maximum when the 
spatial oscillating phase is assumed equal to one or ignored. 
 
2.2     Differentio-Binomial Expansion or the ‘Second 
World Approximation’. 
It will not be very easy to expand (2.6) using Fourier series. 
As a result, there is need for us to obtain a comprehensively 
valid approximate solution to it before expanding it in 
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Fourier series. Hence to make it valid for the application of 
Fourier series expansion, we first minimize it using 
Binomial expansion and thereafter the resulting equation is 
differentiated with respect to the variable time. However, if 
we differentiate the result of the Binomial expansion with 
respect to time, the resulting oscillating amplitude will be 
converted from the usual dimension of length which is 
meters (m) to angular velocity whose unit is radian per 
second (rad./s). We can however, further rearrange (2.6) for 
the purpose of the approximation as 

                            

( ) ( ) 2

1

222

2
222 )()(cos

)(

2
1)()(













′−−′−
−

−
−−= λεελ

λ

λ
λ tnn

ba

ba
baAf

                   

   

        

(2.8) 

                       

( ) ( )












+′−−′−
−

−
−−= )()(cos

)(
1)()(

222

2
222 λεελ

λ

λ
λ tnn

ba

ba
dt
d

baAf

                             (2.9) 

                       

( ) ( )












− +′−−′−
−

′−−
= )()(sin

)(

)(
)(

222

2
222 )( λεελ

λ

λλ
λ tnn

ba

nnba
baAf

                          (2.10) 
                                                 

( ){ })()(sin)()( λεελλ ′−−′−′−= tnnnnDAf                                                  
(2.11) 
Thus for clarity of purpose we have set  
                                                                  

)(/)( 2222 λλ babaD −−= .                        (2.13) 
2.3      Fourier Series Expansion of the Oscillating 
Amplitude )(Af of the CW. 
The cornerstone of Fourier theory is a theorem which states 
that almost any periodic function can be analyzed into a 
series of harmonic functions with periodsτ , 2/τ , 3/τ , ... , 
where τ is the period of the function under analysis [13]. 
Expansion of an oscillating function by Fourier series gives 
all modes of oscillation (fundamental and all overtones) 
which is extremely useful in physics. In particular, 
astronomical phenomena are usually periodic, as are 
animal heartbeats, tides and vibrating strings, so it makes 
sense to express them in terms of periodic functions. Now, 
by expanding the oscillating term of (2.11) in terms of 
Fourier series we get 
 

                       [ ])( AfF  
( ){ } ( ){ })()(2sin)()(sin 210 λεελλεελ ′−−′−+′−−′−+= tnnCtnnCC  

                         
( ){ } ( ){ })()(sin)()(3sin3 λεελβλεελ β ′−−′−++′−−′−+ tnnCtnnC                              

(2.14) 

        
[ ])( AfF

 

( ){ }∑
∞

=

′−−′−+=
1

0 )()(sin
β

β λεελβ tnnCC  

(2.15) 
Thus (2.15) represents the Fourier series expansion of the 
oscillating amplitude for only one phase described by the 
sine (odd) function. It is however not always convenient to 
specify amplitude and phase [14] we can express each term 
in the form 
                     

( ){ } ( ) ( )tnnBtnnAtnnC )(sin)(cos)()(sin λβλβλεελβ βββ β ′−+′−=′−−′−                   

(2.16) 
where 

                  



′−−=

′−=

)cos(

)cos(

λεε

λεε

ββ

ββ

CB

CA
    ⇒        22

βββ BAC +=                            

(2.17) 
The negative sign indicates complex conjugate of the real 
part and the inclusions will make the dynamic components 
of the phase angle real.  Thus (2.17) represents the 
amplitude of the nth harmonic. Where β is the Fourier 
index. From (2.16) if 0=β then;  

                                        ( ){ } 00 )(sin AC =′−− λεε
    
⇒

   

)(sin
0

0 λεε ′−
−=

A
C                                 (2.18) 

Thus the series expansion given by (2.15) can be rewritten 
using (2.16) as 

                                [ ])( AfF = 

0C + ( ) ( ){ }∑
∞

=

′−+′−
1

)(sin)(cos
β

ββ λβλβ tnnBtnnA                                   

(2.19) 
By definition 0A , βA and βB are the Fourier coefficients of 

the series expansion of the CWE. Thus (2.19) represents 
simultaneously the Fourier series expansion for both the 
cosine (even) and sine (odd) functions. The equations (2.15) 
or (2.19) can be appropriately used to study 2D wave 
interference in the Fourier series representation. However, 
in this work we are going to utilize (2.15). 
2.4      Determination of the Fourier Coefficients of the 
Fourier Series Expansion. 
The Fourier components of [ ])( AfF  in (2.15) and (2.19) are 
given by the Euler formulas 

                                  

dtAfA ∫=
τ

τ 0
0 )(

1
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( )[ ]dttnnnnD∫ ′−−′−′−=
τ

λεελλ
τ 0

)()(sin)(
1

                                   

(2.20) 

         

( )dttnnAfA )(cos)(
1

0

λβ
τ

τ

β ′−= ∫

( ){ } ( )dttnntnnD )(cos)()(sin
1

0

λβλεελ
τ

τ

′−′−−′−= ∫
 
    

(2.21) 

( )dttnnAfB )()( sin
1

0

λβ
τ

β τ
′−∫=

( ){ } ( )dttnntnnnnD )()()()( sinsin
1

0

λβλεελλ
τ

τ
′−′−−′−′−∫=

         (2.22) 
                                       

( ) ( ){ })(cos)()(cos0 λεελεετλ
τ

′−−−′−−′−−= nn
D

A                                             

(2.23) 

                                    

( ) ( ){ })(cos)(2cos
)(2

)()(

222

2

0 λεελεεπ
λπ

λλ
′−−′−−

−

′−−
=

ba

nnba
A                                            

(2.24) 
                                            

( )
)(

)(sin)sin()()(

222

2

0

λπ

λεεππλλ

ba

nnba
A

−

′−−′−−
−=                                                   

(2.25) 

                                              

( )
)(sin)(

)(sin)sin()()(

222

2

0

λεελπ

λεεππλλ

′−−

′−−′−−
=

ba

nnba
C                 

(2.26) 
This gives the dimension of 0C as radian per second (rad./s) 
which is the unit of angular velocity. Please see the 
appendix for the identities we have used to get these 
results. 

     

( ) +′−−′−+=



∫
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τ

λ
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nnnnD                                

(2.28) 
The second term on the right side of (2.28) is ignored since 
if 1=β   according to the summation rule the expression in 
the parenthesis is infinite and will not be useful.  
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2
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β
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(2.30) 
Finally, we have for βB that 

( ) −′−
=




∫ ′−−′−−
τ

β λεελβ
τ

λ

0

)()()1(cos
2

)(
tnnB

nnD

( ) dttnn




∫ ′−−′−+
τ

λεελβ
0

)()()1(cos
   

          (2.31) 
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′−−
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)()1(
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2
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λ
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nnnnD
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′−+
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)()1(

)(sin)()()1(sin

2

)(

λβ

λεελεετλβ

τ

λ

nn

nnnnD

                                        (2.32) 
The first term on the right side of (2.32) is also ignored 
based on the previous argument. Hence 

                               

( ) ( )








+

′−+′−−+

−

′−−
−=

)1(

)(sin)()1(2sin

)(4

)()(
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2

β
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λπ

λλ
β
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  (2.33) 
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   (2.34) 
Upon the substitution of (2.30) and (2.34) into (2.17) we get 
after careful simplification 
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(2.35) 

Finally, upon the substitution of (2.26) and (2.35) into (2.15) 

we realize 

                                       [ ])( AfF  = 

( )
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′−−′−−

)(sin)(
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(2.36) 
Thus (2.36) represents the Fourier transform of the velocity 
component of the oscillating amplitude of the CW.  
 
2.5     Fourier Series Expansion of the Spatial Oscillating 
Phase )(θf of the CWE. 
Now that we have taken the Fourier transform of the 
oscillating amplitude we can now proceed to calculate the 
Fourier transform of the spatial oscillating phase with 
respect to the position vector. Now we expand (2.7) by 
Fourier series as 
              
[ ])(θfF =

( ) ( )+−′−−+−′−−+ EtnnrkCEtnnrkCC cc )(.2cos)(.cos 210 λλ   
                     

( ) ( )EtnnrkCEtnnrkC cc −′−−++−′−− )(.cos)(.3cos3 λβλ β



                                      

(2.41) 
                             

[ ])(θfF = +0C ( )∑
∞

=

−′−−
1

)(.cos
β

λββ EtnnrkC c


            

(2.42)                                           
However, there is need to separate the function in the 
summation sign into two components. 

                           
( ) ( ) ( )rkBrkAEtnnrkC ccc


.sin.cos)(.cos ββλβ βββ +=−′−−                                  

(2.43) 
With the assumption that 

  
( )EtnnCA −′−−= )(cos λββ     ⇒   

( )EtnnCA +′−= )(cos λββ                             (2.44)
  

( )EtnnCB −′−−−= )(sin λββ           ⇒   

( )EtnnCB +′−= )(sin λββ                       (2.45)  

                                                                                  

22
βββ BAC +=

           
(2.46) 

                                            
Also upon the substitution of (2.43) into (2.42) we get  
                                                

[ ])(θfF = +0C ( ) ( )∑
∞

=

+
1

.sin.cos
β

ββ ββ rkBrkA cc


              

(2.47)         
 From (2.43):                                 if 0=β   ⇒

 
    

( ) 00 )(cos
1 A

Etnn
C

+′−
=

λ
                            (2.48) 

 
2.6      Determination of the Fourier Coefficients of the 
Fourier Series Expansion. 
The Fourier components of (2.47) 0A

 
, βA and βC are given 

by the Euler formulas 

                                              
drf

l
A

l

∫=
0

0 )(
1

θ   

( )∫ −′−−=
l

drEtnnrk
l c

0

)(.cos
1

λ
                  (2.49) 

                       
( )drrkf

l
A c

l


.cos)(
2

0

βθβ ∫=  

( ) ( )∫ −′−−=
l

drrkEtnnrk
l cc

0

.cos)(.cos
2 

βλ (2.50) 

                       
( )drrkf

l
B c

l


.sin)(
2

0

βθβ ∫=   

( ) ( )∫ −′−−=
l

drrkEtnnrk
l cc

0

.sin)(.cos
2 

βλ                 

(2.51) 

                    jkkikkkc )()( λλ ′−+′−=


; )sin(cos jirr ϕϕ +=
   

⇒    )sin(cos)(. ϕϕλ +′−= rkkrkc


            (2.52) 
Note that we changed from Cartesian coordinate to 2D 
polar coordinate system. 
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( )∫ −′−−+′−=
l

drEtnnrkk
l

A
0

)()sin(cos)(cos
1

0 λϕϕλ
   

                                     

(2.53) 
                  

( ) ( )
)sin(cos)(

)(sin)()sin(cos)(sin
0 ϕϕλ

λλϕϕλ
+′−

−′−−−−′−−+′−
=

lkk
EtnnEtnnlkk

A

                              
(2.54) 

                   
( ) ( )

)sin(cos)(
)(sin)()sin(cos)(sin

0 ϕϕλ
λλϕϕλ

+′−

+′−+−′−−+′−
=

lkk
EtnnEtnnlkk

A

                               (2.55) 

                    
( ) ( )

( )Etnnlkk
EtnnEtnnlkk

C
+′−+′−

+′−+−′−−+′−
=

)(cos)sin(cos)(
)(sin)()sin(cos)(sin

0 λϕϕλ
λλϕϕλ

                              

(2.56) 
Also upon using the 
relation; )(cos)(coscoscos2 BABABA −++= then 
(2.50) will reduce to 

    
( )( ){ } ++′−+−′−−+′−= ∫

l

drrkkEtnnrkk
l

A
0

)sin(cos)()()sin(cos)(cos
2
12

ϕϕλβλϕϕλβ  

               

( )( ){ }∫ +′−−−′−−+′−
l

drrkkEtnnrkk
l 0

)sin(cos)()()sin(cos)(cos
2
12

ϕϕλβλϕϕλ
   

 
      

(2.57) 

                        

( ){ } +−′−−+′−+= ∫
l

drEtnnrkk
l

A
0

)()sin(cos))(1(cos
2
12

λϕϕλββ  

                                  

( ){ }∫ −′−−+′−−
l

drEtnnrkk
l 0

)()sin(cos))(1(cos
2
12

λϕϕλβ                                  

(2.58) 
             

( ) ( ){ }
+

++′−

−′−−−−′−−+′−+
=

)1()sin(cos)(

)(sin)()sin(cos)()1(sin

βϕϕλ

λλϕϕλβ
β lkk

EtnnEtnnlkk
A  

                     
( ) ( ){ }

)1()sin(cos)(

)(sin)()sin(cos)()1(sin

βϕϕλ

λλϕϕλβ

−+′−

−′−−−−′−−+′−−

lkk

EtnnEtnnlkk

      
                      

(2.59) 
The second term on the right side of (2.59) is ignored since 
the equation becomes infinite if 1=β . Hence 

         

( ) ( )








++′−

+′−+−′−−+′−+
=

)1()sin(cos)(
)(sin)()sin(cos)()1(sin

βϕϕλ
λλϕϕλβ

β lkk
EtnnEtnnlkk

A                       

(2.60) 

Finally, by following the same procedure that led to (2.63) 
we can solve for βB  in (2.54) to get 

       
( ) ( )









++′−

+′−−−′−−+′−+
−=

)1()sin(cos)(
)(cos)()sin(cos))(1(cos

βϕϕλ
λλϕϕλβ

β lkk
EtnnEtnnlkk

B                      

(2.61) 
Thus βA and βB  are both dimensionless.  We can now 

substitute (2.60) and (2.61) into (2.46) as 
       

=2
βC

( ) ( ) 2

)1()sin(cos)(
)(sin)()sin(cos))(1(sin









++′−

+′−+−′−−+′−+

βϕϕλ
λλϕϕλβ

lkk
EtnnEtnnlkk

+ 
                  

( ) ( ) 2

)1()sin(cos)(
)()sin(cos))(1(cos)(cos









++′−

−′−−+′−+−+′−

βϕϕλ
λϕϕλβλ

lkk
EtnnlkkEtnn

                    (2.62) 
After a careful and lengthy algebra and with the 
application of trigonometric identity, see appendix, we 
realize 

                                            

( )








++′−

+′−+−
=

)1)(sin(cos)(

)sin(cos)()1(cos22

βϕϕλ

ϕϕλβ
β lkk

lkk
C                                                   

(2.63) 
 We can now replace (2.56) and (2.63) into (2.42) and 
simplify to get 

               
[ ])(θfF   = 

( ) ( )
( )Etnnlkk

EtnnEtnnlkk
+′−+′−

+′−+−′−−+′−

)(cos)sin(cos)(
)(sin)()sin(cos)(sin

λϕϕλ
λλϕϕλ

   +            

     
( ) ( )Etnnrkk

lkk

lkk
−′−−+′−

++′−

+′−+−
∑
∞

=













)()sin(cos)(cos

)1)(sin(cos)(

)sin(cos)()1(cos22

1

λϕϕλβ
βϕϕλ

ϕϕλβ

β

   

      (2.64) 
However it is also clear that in the absence of the ‘parasitic 
wave’ in which case 0=λ we get 

                                    
[ ])(θfF   = 

( ) ( )
( )Entlk

EtnEtnlk

++

++∂−−+

cos)sin(cos

sin)sin(cossin

ϕϕ

ϕϕ
    +            

                       

( ) ( )Etnrk
lk

lk
−−+

++

++−
∑
∞

=













)sin(coscos

)1()sin(cos

)sin(cos)1(cos22

1

ϕϕβ
βϕϕ

ϕϕβ

β

                              (2.65) 
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Thus [ ])(θfF is dimensionless. Note that: if 0=λ ; 

)sin(cos. ϕϕ += rkrkc


, επϕ −=   and ε=E .           
 
2.7 Convolution Theory of the Fourier Transform Of 
the Oscillating Amplitude [ ])( AfF and the Spatial 

Oscillating Phase [ ])(θfF of the CW.  
Now that we have separately determined the Fourier series 
expansion of the oscillating amplitude [ ])( AfF  and the 

spatial oscillating phase [ ])(θfF  respectively. The 
necessary requirement now is to convolute them in order to 
obtain a concise equation of the CW. Convolution here 
means multiplying the oscillating amplitude and the spatial 
oscillating phase term by term. Let us represent the result 
of the convolution of these functions by H and then with 
the same displacement vector y  which represents the CW. 

                                                 [ ] [ ]{ })(;)( θfFAfFHv = ≡  
{ })( AfF  ⊗ { })(θfF                                              (2.66) 

Also when we convolute (2.39) and (2.64) so that 
 

        
[ ] [ ]{ })(;)( θfFAfFHv =

 
= 

( )( )
×

′−−

′−−′−−

)(sin)(

)(sin)sin()()(

222

2

λεελπ
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( ) ( )

( )Etnnlkk
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+′−+−′−−+′−
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)(sin)()sin(cos)(sin

λϕϕλ
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)(sin)(

)(sin)sin()()(
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2
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∞
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)(2
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( ) ( )

( )Etnnlkk
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+′−+′−
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)(sin)()sin(cos)(sin
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=
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)1(
)1(sin

)(2

)()(

β
β

πβ
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( )
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++′−

+′−+−














)1)(sin(cos)(

)sin(cos)()1(cos22

βϕϕλ

ϕϕλβ

lkk

lkk
 

                             ( ))()(sin λεελβ ′−−′− tnn  

( )Etnnrkk −′−−+′− )()sin(cos)(cos λϕϕλβ                   
(2.67) 
In the absence of ‘parasitic wave’, that is when 0=λ , we 
realize the below equation. 

[ ] [ ]{ })(;)( θfFAfFHv = = 
( )
)(sin

sin)(sin
επ

εππ −na

( ) ( )
( )Etnlk
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++−−+

cos)sin(cos
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ϕϕ
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∑
∞
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( ) ( )∑
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=

−
+

+

1

)(sin
)1(
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∑






 ∞

=
+

+

1
)1(
)1(sin

2
β

β
πβ

π
na

  

( )














++

++−

)1)(sin(cos

)sin(cos)1(cos22

βϕϕ

ϕϕβ

lk

lk

( ) ×− )(sin εβ tn  

                                                          

( )Etnrk −−+ )sin(cos(cos ϕϕβ      (2.68)                                             
 
In this study we assume arbitrary values for the radius of 
the cylindrical coordinate pipe r = 0.005m (0.5m) and the 
wavelength λ of the CW as l = 0.01m (1cm). We also 
considered in this work only situation where the 
constraints are of equal weights, say βα = . Otherwise, if 
we apply the double summation rule as it stands, that 
means, we shall first allow α take the value of one and 
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let β run from one to infinity, again we allow α take the 
value of two and let β run from one to infinity and the 
process is repeated. However, since both constraints are of 
the same source function we can equate them so as to save 
us computation time and unnecessary difficult task.  
 
2.7     Evaluation of the Relative Distance Covered by 
the Carrier wave CW in One Dimension (1D). 
Suppose we want to evaluate the entire relative distance 
covered by the carrier wave as it propagates in one 
dimensional (1D) free linear space, then certain boundary 
conditions would have to be met. Under this circumstance, 
the carrier wave shall produce a corresponding distance for 
every value of the multiplierλ and the total distance 
covered would be the sum of these relative distances. Now 
let us consider the product differentiation of the oscillating 
amplitude and the spatial oscillatory phase as components 
of the CW. 
                                       

( )×′−−′−′−−== )()(sin)()( 2 λεελλλ tnnnnba
dt

dy
v  

                     

( )( ) ( ) +−′−−′−×′−−′−−−−
−

Etnnxkktnnbaba )()(cos)()(cos)(2)( 2
1

2222 λλλεελλλ  
                                       

( )( ) ×′−−′−−−− 2
1

2222 )()(cos)(2)( λεελλλ tnnbaba  

                                               

( )Etnnxkk
dt

dE
nn −′−−′−+′− 






 )()(sin)( λλλ

 
   (2.69)                                             

It is assumed in this study that after a sufficiently long time 
and a specific distance covered, the carrier wave ceases to 
exist,  that is, 0→y  as maxλλ → . Consequently, the 
velocity of the carrier wave must also tend to zero at the 
critical value maxλ , hence, 0/ == dtdyv , and

      
 

                       

( )×′−−′−′−− )()(sin)()( 2 λεελλλ tnnnnba

( )×−′−−′− Etnnxkk )()(cos λλ       
                                          

( )( ) =′−−′−−−−
−

2
1

2222 )()(cos)(2)( λεελλλ tnnbaba  
                                               

( )×−′−−′−+′−− 





 Etnnxkk

dt

dE
nn )()(sin)( λλλ

 

                                             

( )( )2
1

2222 )()(cos)(2)( λεελλλ ′−−′−−−− tnnbaba                                        
(2.70) 

Further division and rearrangement of (2.70) with the hope 
to produce a better result yields 
                                                     

( )×′−−′−′−− )()(sin)()( 2 λεελλλ tnnnnba      
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−
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λ
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(2.71) 
In qualitative analysis, unlike numerical work, the number 
one is a fundamental number, an indiscriminate constant 
value which can only describe the neutral behaviour of a 
system of varying series. In consequence, the exact 
behaviour of a non-stationary system may not be studied in 
the indiscriminate region of a constant value. Thus the 
constant value term which is a non-zero-order 
approximation may therefore be neglected from the 
varying series solution by direct differentiation of the 
resulting Binomial equation.  
 
We shall at this stage adopt a new form of approximation 
technique the “Differentio-Binomial” approximation. This 
approximation makes use of the second term in the series. 
The approximation has the advantage of fast convergence 
and high degree of minimization. The “Differentio-
Binomial” approximation is defined as follows. 
                                          

( ) 







−

−−
−

−
−−=− 

!3

)2)(1(

!2

)1(
11

32 xnnnxnn
nx

dx

d
x n                            

(2.72) 
Thus when we utilize this approximation on both sides of 
(2.71), we get after some simplification  
                                           

( )×′−−′−′−′−−− )()(sin))(()( 2 λεελλλλ tnnnnnnba  
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−

−
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−
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dt
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( ) ( ))()(sin
)(

)(
)( 222

2
2
1
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(2.73) 
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−

′−−
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)(

)()(
222

2

λεελ
λ

λλ
tnn

ba

nnba
 

                                                  
( ) ( )EtnnxkkZnn −′−−′−−′− )()(tan)( λλλ  (2.74) 
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Znnba

nnba

kk
x )()()(sin
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tan
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1
222

2
1 λλεελ

λλ

λλ
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   (2.75) 
In the absence of the multiplier λ = 0, Z = 0, ε=E , the 
relative distances covered by the CW is given by  
                                                              

( ){ }εε ++−= − tntn
k

x )(sintan
1 1      (2.76)                                                 

Thus (2.75) and (2.76) are used to calculate the relative 
linear distances x  covered by the carrier wave CW for each 
value of the multiplier 63.43,,1,0 =λ . Note that while 
(2.75) depends on t  and λ , (2.76) depend entirely on t . The 
graphs emanating from (2.75) and (2.76) are shown in fig. 
3.9 of section 3. 
2.8    Calculation of the unknown characteristics of the 
‘parasitic wave’ from the known characteristics of the 
‘host wave’. 
Let us now consider some arbitrary values of the 
characteristics of the ‘host wave’ contained in the carrier 
wave given by (2.3). Hence, let us assume that the ‘host 
wave’ has the following characteristics: a = 0.002 m, =n 5 
rad. /s, ε =0.01746 rad., and k =1.7456 rad. /m. Then the 
assumption here is that after a prolonged damping time, 
the carrier wave 0→y as maxλλ → , then the characteristics 
of both interfering waves become equal to one another and 
the carrier wave function becomes zero. Based on this 
simple argument we get the following relations.  
   0=− λba   ⇒  λba = ⇒    λb=002.0                                                          
(2.77) 
 0=′− λnn   ⇒  λnn ′=   ⇒    λn′=5                                                            
(2.78) 
  0=′− λεε   ⇒  λεε ′=   ⇒    λε′=01746.0                                                      
(2.79) 

0=′− λkk   ⇒  λkk ′=   ⇒    λk′=7456.1                                                       
(2.80) 

When we divide (2.77) by (2.78); (2.77) by (2.79); (2.78) by 
(2.79), and finally (2.79) by (2.80), we obtain respectively 

bn =′0004.0 ; b=′ε1146.0 ; n′=′ε37.286  ; ε ′=′k01.0                                          
(2.81) 
With the help of simple ratio the basic characteristics of the 
‘parasitic wave’ can be found from (2.81) as: 
b =0.00004584 m ;  n′ = 0.1146 rad. /s ; ε ′ =0.0004 rad.  and 
k′ = 0.04 rad. /m                       (2.82) 
By using these basic characteristic values in any of (2.77) - 
(2.80), we generally obtain maxλ = 43.63. Thus, the physical 
range of interest of the inbuilt raising multiplier is,    

440 ≤≤ λ  where λ (= 0, 1, 2, … , 43, 43.63). We note that at 
the critical or maximum value of the multiplier maxλ  all the 
characteristic values of the ‘parasitic wave’ contained in the 
carrier wave equation would have been correspondingly 
raised to become almost equal to those of the ‘host wave’.   
 
In consequence, we have succeeded in using the available 
known values of the characteristics of the ‘host wave’ in the 
carrier wave to determine the characteristic values of the 
‘parasitic wave’ which were initially not known. Also these 
characteristic values are used to calculate the maximum 
value of the raising multiplier maxλ  and hence its 
subsequent values are determined. The variation of the 
multiplier is choice dependent but we adopted a slow 
varying multiplier in such a way that we can understand 
clearly the physical parameter space which is assessable to 
the model that we have developed. 
 
2.9   Determination of the Attenuation Constant (η). 
Attenuation is a decay process. It brings about a gradual 
reduction and weakening in the initial strength of the 
intrinsic parameters of a given active system.  In this study, 
the parameters are the amplitude ( a ), phase angle ( ε ), 
angular frequency ( n ) and the spatial frequency ( k ). The 
dimension of the attenuation constant (η ) is determined by 
the system under study. However, in this work, attenuation 
constant is the relative rate of fractional change (FC) in the 
basic parameters of the carrier wave function. There are 4 
(four) basic attenuating parameters present in the carrier 
wave function. Hence, 
          Average FC,   







































 ′−
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kk
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nn
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λεελλ
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(2.83)                   
                                Attenuation constant,  

)(
1

stimeunit

FCFC
ii +==

−
= λλη

)(
1

stimeunit
ii +−

=
σσ                                   

(2.84)                                
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And its dimension is per second (s-1). Thus (2.84) gives 
0.022916s-1 for all values of i =1, 2, … , 43, 43.63. 
 
2.10   Determination of the Decay Time ( t ) of the Carrier 
Wave CW. 
We used the information provided in section 2.9, to 
compute the various times taken for the carrier wave to 
decay to zero. This is possible provided the value of the 
time when the raising multiplier is exactly one is known, 
that is, about the time when λ  starts counting. The 
maximum time the carrier wave lasted as a function of the 
raising multiplier λ  is also determined with the use of the 
attenuation equation shown in (2.84). The reader should 
note that we have adopted a slowly varying regular 
interval for the raising multiplier λ =0, 1, 2, …, 43, 43.63) for 
our study. The varying interval we adopt will help to 
delineate clearly the physical parameter space accessible to 
our model. However, it is clear from the calculation that the 
different attenuating fractional changes contained in the 
carrier wave function are approximately equal to one 
another. We can now apply the attenuation equation given 
below. 
                                                                                    

λη
σ

/2 te−=                                                 (2.85)                                                                                                              
                                                                                      

σ
η
λ

ln
2

=t
                                                         

(2.86)
                                                                          

 

Clearly, we used (2.86) to calculate the exact value of the 
time corresponding to any value of the multiplierλ . 
We used table scientific calculator and Microsoft excel to 
compute our results. Also the GNUPLOT 3.7 version was 
used to plot the corresponding graphs. 
   

 
 
 
 
 
3.0 Presentation of Results 
 

 
 

Fig. 3.1: (a) the upper blue curve which represents the 
maximum displacement when the multiplier λ = 0 and time 

[0, 8251], β  =43.63 and (b) the lower brown curve which 
represents the maximum displacement when the multiplier 

λ  [0, 43.63] and time [0, 8251s], β  =43.63. 

 
Fig. 3.2: Represents the multiplier λ  [0, 43.63] and time [0, 

8251s], β  =43.63. 

 

Fig. 3.3: Represents the multiplier λ  [0, 43.63] and time [0, 
8251s], β  =43.63. 
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Fig. 3.4: Represents the multiplier λ = [0, 43.63] and time [0, 
8251s] β = 0. 

 

Fig. 3.5: Represents the multiplier λ = [0, 22] and time [0, 
300s] β = 43.63. 

 

 

 

Fig. 3.6: Represents the multiplier λ = [22, 43.63] and time 
[300, 8251s] β = 43.63. 

 

Fig. 3.7: Represents the multiplier λ = 0 and time [0, 8251s] 
β = 0, Z =0, ε=E . 

 

 

Fig. 3.8: Represents the multiplier λ = 0 and time [0, 8251s] 
β = 43.63, Z =0, ε=E . 

 
 

 
 

Fig. 3.9: Represents, (a) the brown straight line when the 
multiplier λ = 0 and time [0, 8251s], β = 43.63,    

Z =0, ε=E and  (b) the blue straight and curved line when 
the multiplier λ = [0, 43.63] and time [0, 8251s], 

β = 43.63. 
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4.0 Discussion of Results 

The relative attenuating parameters of the CW as they 
depend on the raising multiplier and time are shown in 
figs. 3.1 – 3.9.  The graph of the total phase angle E , the 
characteristic angular velocity Z and the maximum 
displacement my  which are given by (2.4), (2.5), and (2.6) is 
shown in figs. 3.1, 3.2 and 3.3. While the graph of the 
velocity gradient of the carrier wave CW which is given by 
(2.67) and (2.68) is represented by figs 3.4 – 3.9. Although, 
our work was confined to only when the Fourier index was 
43.63, since we believe that this is the region of most 
relevant interest to our work. Note that figs. 3.4 and 3.7 
which are the first term of equation (2.67) and (2.68) is the 
harmonic analysis of the CW and it does not contain the 
Fourier index β . 

The decay process of the total phase angle, the 
characteristic angular velocity is not constant. The irregular 
attenuating behaviour is a consequence of the fact that the 
amplitude of the carrier wave do not steadily go to zero, 
rather it fluctuates. The fluctuation is due to the 
constructive and destructive interference of both the ‘host 
wave’ and the ‘parasitic wave’.  In the regions where the 
amplitude of the carrier wave is greater than either of the 
amplitude of the individual wave, we have constructive 
interference, otherwise, it is destructive.  

It is clear from fig. 3.1 that the decay process of the 
maximum displacement or maximum amplitude of the CW 
is exponential in shape and initially the decay frequency is 
very rapid. The initial decay frequency indicate the rate at 
which the initial active quantitative characteristics of the 
‘host wave’ is been destroyed by the interfering ‘parasitic 
wave’. The decay process of the maximum displacement 

my  of the CW becomes steady after about 2000s and finally 
it goes to zero after 8251s.  
 
The steady decay process of the CW signifies that all the 
active quantitative components of the ‘host wave’ would 
have been completely eroded by the interfering ‘parasitic 
wave’ and since the ‘parasitic wave’ does not have its own 
physical parameters to sustain a continuous independent 
existence it finally goes to zero after a given period of time. 
However, in the absence of the ‘parasitic wave’ (λ = 0) the 
maximum displacement curve does not attenuate to zero 
easily under the same condition. The ‘host wave’ is 
continuous although it does not fluctuate beyond 2400s and 
this information is shown by the blue upper curve of fig. 
3.1.   
 

From the result of our calculation, it is revealed that the 
maximum amplitude or the maximum displacement of the 
carrier wave is made up of both the imaginary and the real 
part; 21 iAAA += . This shows that the motion of the 

carrier is actually two-dimensional (2D). Thus 1A and 2A  
are the components of the amplitude in x and y - directions 
and A is tangential to the path of the moving amplitude in 
the carrier wave. The imaginary value of the maximum 
displacement of the carrier wave which occurs at =λ 0, 8, 
9, 12, 14, e.t.c., is unnoticeable or inadequately felt by the 
physical system described by the carrier wave.  
 
Although, unnoticeable as it may, but so much imaginary 
destructive harm would have been done to the intrinsic 
constituent parameters of the ‘host wave’. It should be 
noted here that we only used the absolute values of the 
corresponding maximum displacement. The value of the 
maximum displacement of the carrier wave for the said 
imaginary values of the multiplier λ is assumed to be 
negative instead of the imaginary value ( 1−=i ). Then the 
maximum displacement is plotted against time. 
  
However, beyond this complex anomalous interval, the 
amplitude of the carrier wave begins to fluctuate with 
positive values. In this region, the intrinsic parameters of 
the ‘host wave’ in the carrier wave are putting a serious 
resistance to the destructive influence of the ‘parasitic 
wave’. This resistance is an attempt by the constituent 
parameters of the ‘host wave’ to annul the destructive 
effects of the ‘parasitic wave’, thereby restoring the system 
of the ‘host wave’ back to the original activity and 
performance as it possessed initially. If the restoring 
tendency of the constituent parameters of the ‘host wave’ is 
not effective enough, then the amplitude of the carrier wave 
depreciates or decays gradually to zero and it ceases to 
exist.  

It is shown in fig. 3.2 that initially the spectrum of the total 
phase angle of CW has a very high frequency and hence a 
small wavelength between 0 – 2000s. This is however 
followed by irregular low frequency and longer 
wavelength. The total phase angle attenuates to zero after 
8251s. 
 
It is observed in fig. 3.3 that initially the decay frequency of 
the characteristic angular velocity of the CW is very high. 
This indicates that the rate at which the components of the 
‘host wave’ is been destroyed by the interfering ‘parasitic 
wave’. The characteristic angular velocity has initial 
maximum positive value of 0.838232 rad/s at about 100s 
after the interference of the ‘parasitic wave’ on the ‘host 
wave’. The characteristic angular velocity has a maximum 
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negative value of -3.4522 rad/s at 1600s and it finally 
attenuates to zero after 2000s. Positive radial velocity means 
attraction and hence constructive interference between the 
‘host wave’ and the ‘parasitic wave’, while negative radial 
velocity means repulsion and hence destructive 
interference between them. 
 
The trend of event with respect to the total phase angle 
E and the characteristic angular velocity Z of the CW are 
similar to that of the maximum amplitude or the maximum 
displacement as discussed above. Since the wave 
characteristic of the maximum displacement of the CW due 
to the raising influence of the multiplier is present in the 
parameters of both E and Z . However, the values of E  
and Z  is greater than those of my .  

The fundamental velocity of the CW which is the first term 
of (2.67) is shown in fig. 3.4. It has a positive maximum 
value of 4.49 x 10-12 rad/s and a negative minimum value of 
-4.2 x 10-12rad/s. The fundamental velocity of the CW goes 
to zero after 400s. Fig. 3.4 and 3.5 provides how consistently 
the constituent parameters of the ‘host wave’ are 
correspondingly attenuated to zero by the increasing 
parameters of the ‘parasitic wave’. 

We should first emphasize here that fig. 3.6 is a 
continuation of fig. 3.5 and this graph represents the second 
terms or the summation terms on the right side of (2.67) 
containing β . We have only stretched it with the interval of 
the multiplier λ [0, 22] and λ [22, 43.63] in order to reveal 
clearly some of the significant features which are unveiled 
if we used one continuous interval of λ [0, 43.63]. Thus 
generally, the radial velocity of the CW has a positive 
maximum value of 1.78888 x 10-10 rad/s and a negative 
minimum value of -1.93956 x 10-10 rad/s. It has a low decay 
velocity frequency which is finally brought to rest after 
about 1600s. 
 
Figs. 3.7 and 3.8 are the graphs of equation (2.68) and they 
both represent the radial velocity of the CW in the absence 
of the ‘parasitic wave’ (λ = 0).  Thus it is the propagation of 
only the ‘host wave’. While fig. 3.7 represents the 
fundamental radial velocity of the ‘host wave’ fig. 3.8 is the 
radial velocity of the ‘host wave’ when the influence of the 
interfering ‘parasitic wave’ is not considered. The 
fundamental radial velocity of the ‘host wave’ has a 
positive maximum radial velocity of 1.5 x 10-7rad/s and a 
negative minimum radial velocity of -1.2 x 10-6 rad/s. The 
radial velocity of the of the ‘host wave’ has a positive 
maximum value of 2.691048 rad/s and a minimum negative 
value of -2.69194 rad/s. It is clear that the radial velocities 

bandwidth of the ‘host wave’ as shown in figs. 3.7 and 3.8 
are larger than those of the CW when the influence of the 
‘parasitic wave’ is considered as shown in figs. 3.5 and 3.6. 
 
Initially the decay spectrum of the attenuation frequency of 
the propagation of the CW is very high but it decreases 
with increasing wavelength after 2000s. The propagation of 
the ‘host wave’ in the absence of the ‘parasitic wave’ is 
almost brought to zero after 8251s, that is when the β = 
43.63.  
 
It is also shown in fig. 3.9 that the respective distances 
covered by the CW consistently increases in the situation 
when the influence of the ‘parasitic wave’ is not considered 
but the CW is drastically brought to rest in the case when 
the multiplier is considered. That means the effect of the 
‘parasitic wave’ has caused a serious retardation on the 
transport mechanism of the carrier wave after a sufficiently 
long time and maximum value of β .  

We should emphasize here that the take off time cannot be 
exactly zero; it could be any value different from zero. This 
is the correction in time. Hence the model produced a value 
of x = 0.02m for the linear distance covered even at t = 0 

and λ = 0.  That is, at t  = 0, 0.51s, 2.05s, 4.66s, 8.39s,…, 
3964.97s, 8251.37s and with a corresponding value of λ = 0, 
1, 2, 3, 4,…, 44, 43.63, the linear distance covered by the CW 
given by (2.75) are x ; 0.02m, 1.45m, 5.89m, 13.36m, 

24.02m,…,11235.50m, 64.26m respectively. However, in the 
absence of the multiplier λ which is represented by (2.76), 
under the same given time, the corresponding linear 
distance covered by the CW are x ; 0.02m, 1.75m, 5.51m, 

12.92m, 23.63m,…,11357.50m, 23635.23m respectively.   

Thus when we fixed the Fourier index β at 43.63, then the 
total relative distance covered by the CW in the absence of 
the multiplier is 109896m and with a total time of 38367s 
while in the presence of the multiplier the CW covered a 
total relative distance of 86047m with the same time. The 
difference in the total relative distance covered is 23849m, 
that means the expected total relative distance to have been 
covered by the ‘host wave’ is now altered or reduced by the 
influence of the ‘parasitic wave’ by 22%.  

 

5.0  Conclusion 
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All physical systems are guided by some inbuilt internal 
factors that annul the destructive influence of any external 
interfering wave. The interference of a ‘parasitic wave’ on a 
‘host wave’ could cause the ‘host wave’ to decay to zero if 
they are out of phase. The decay process of the ‘host wave’ 
can be gradual, over-damped or critically damped 
depending on the rate in which the amplitude of the ‘host 
wave’ is brought to zero.  However, the general concept is 
that the intrinsic parameters of the ‘host wave’ in the carrier 
wave would first put a serious resistance to the destructive 
influence of the ‘parasitic wave’. This resistance is an 
attempt by the constituent parameters of the ‘host wave’ to 
annul the destructive effects of the ‘parasitic wave’, thereby 
restoring the system of the ‘host wave’ back to the original 
activity and performance. If the restoring tendency of the 
constituent parameters of the ‘host wave’ is not effective 
enough, then the amplitude of the carrier wave depreciates 
and decays gradually to zero.  

5.1 Suggestions for Further Work 

This study in theory and practice can be extended to 
investigate wave interference and propagation in three- 
dimensional (3D) system. The carrier wave we developed 
in this work can be utilized in the deductive and predictive 
study of wave attenuation in exploration geophysics and 
telecommunication engineering.   

 
Appendix 
The following is the list of some useful identities which we 
implemented in the study. 

1.  
2

cos
2

sin2sinsin
yxyx

yx
−+

=+      ;         (2)          

2
sin

2
cos2sinsin

yxyx
yx

−+
=−  

(3)  2
cos

2
cos2coscos

yxyx
yx

−+
=+      ;         (4)

 2
sin

2
sin2coscos

yxyx
yx

−+
−=−  

(5) )(sin)(sincossin2 yxyxyx −++=    ;         (6)
 )(sin)(sinsincos2 yxyxyx −−+=  
(7) )(cos)(coscoscos2 yxyxyx −++=  ;         (8)
 )(cos)(cossinsin2 yxyxyx +−−=  
(9) yxyxyx sincoscossin)(sin ±=±     ;       (10)       

yxyxyx sinsincoscos)(cos =±  
(11) xxx cossin22sin = ;      
(12) xx sin)(sin −=−  (odd and antisymmetric   function) 
 (13)        xx cos)(cos =−  (even and symmetric  function) 
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